Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros










Intervalo de año de publicación
1.
Oncol Lett ; 26(2): 342, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37427338

RESUMEN

Cedrol is a sesquiterpene alcohol isolated from Cedrus atlantica, which has been traditionally used in aromatherapy and has anticancer, antibacterial and antihyperalgesic effects. One characteristic of glioblastoma (GB) is the overexpression of vascular endothelial growth factor (VEGF), which induces a high degree of angiogenesis. Although previous studies have reported that cedrol inhibits GB growth by inducing DNA damage, cell cycle arrest and apoptosis, its role in angiogenesis remains unclear. The aim of the present study was to investigate the effects of cedrol on VEGF-induced angiogenesis of human umbilical vein endothelial cells (HUVECs). HUVECs were treated with 0-112 µM cedrol and 20 ng/ml VEGF for 0-24 h, and then anti-angiogenic activation of cedrol was determined by MTT assay, wound healing assay, Boyden chamber assay, tube formation assay, semi-quantitative reverse transcription-PCR and western blotting. These results demonstrated that cedrol treatment inhibited VEGF-induced cell proliferation, migration and invasion in HUVECs. Furthermore, cedrol prevented VEGF and DBTRG-05MG GB cells from inducing capillary-like tube formation in HUVECs and decreased the number of branch points formed. Moreover, cedrol downregulated the phosphorylation of VEGF receptor 2 (VEGFR2) and the expression levels of its downstream mediators AKT, ERK, VCAM-1, ICAM-1 and MMP-9 in HUVECs and DBTRG-05MG cells. Taken together, these results demonstrated that cedrol exerts anti-angiogenic effects by blocking VEGFR2 signaling, and thus could be developed into health products or therapeutic agents for the prevention or treatment of cancer and angiogenesis-related diseases in the future.

2.
Life Sci ; 327: 121815, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37263489

RESUMEN

AIMS: Diabetic retinopathy (DR) is a common complication of diabetes that causes visual impairment and blindness in adults. This study aimed to explore the protective effects of n-Butylidenephthalide (BP) on hyperglycemia-treated RPE in vitro and in vivo. MAIN METHODS: C57BL/6 mice were injected with STZ by intraperitoneal to induce early DR and orally administrated with 2 mg/kg BP every day for twelve weeks. Body weight and blood glucose were measured once a week. The level of retina damage was determined by TUNEL assay and H&E staining. The outer blood-retinal barrier integrity and RPE65 expression of retina were evaluated by immunofluorescence. In in vitro study, ARPE-19 cells were long-term cultured with high glucose and BP for 8 days and studied for cell survival, tight junction integrity, RPE65 expression, angiogenic factors, mitochondria membrane potential (MMP), and ROS by MTT assay, Western blot, ß-galactosidase staining, immunofluorescence, JC-1, or DCFH-DA. KEY FINDINGS: The results indicate that BP suppressed the hyperglycemic effect and maintained retina anatomy normalization, as well as protected RPE cell survival, tight junction integrity, and RPE65 expression in vitro and in vivo. In vitro results showed BP stimulated high glucose-treated ARPE-19 cell proliferation and suppressed senescence via ERK pathway. Numerous ROS production and MMP imbalance were prevented by BP through Nrf-2/HO-1 pathway. BP inhibited high glucose-induced RPE neovascularization by VEGF dysregulation. SIGNIFICANCE: BP significantly protected tight junction integrity and RPE cellular physiology through ERK/Nrf-2/HO-1 pathway to prevent DR progression. Thus, BP has great potential to be developed therapeutic agents or adjuvants for DR.


Asunto(s)
Diabetes Mellitus , Retinopatía Diabética , Ratones , Animales , Epitelio Pigmentado de la Retina/metabolismo , Retinopatía Diabética/metabolismo , Uniones Estrechas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Ratones Endogámicos C57BL , Transducción de Señal , Glucemia/metabolismo , Apoptosis , Diabetes Mellitus/metabolismo
3.
Chin J Physiol ; 66(3): 119-128, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37322622

RESUMEN

Glioblastoma (GB) is one of the most aggressive and malignant tumors of the central nervous system. Conventional treatment for GB requires surgical resection followed by radiotherapy combined with temozolomide chemotherapy; however, the median survival time is only 12-15 months. Angelica sinensis Radix (AS) is commonly used as a traditional medicinal herb or a food/dietary supplement in Asia, Europe, and North America. This study aimed to investigate the effect of AS-acetone extract (AS-A) on the progression of GB and the potential mechanisms underlying its effects. The results indicated that AS-A used in this study showed potency in growth inhibition of GB cells and reduction of telomerase activity. In addition, AS-A blocked the cell cycle at the G0/G1 phase by regulating the expression of p53 and p16. Furthermore, apoptotic morphology, such as chromatin condensation, DNA fragmentation, and apoptotic bodies, was observed in AS-A-treated cells, induced by the activation of the mitochondria-mediated pathway. In an animal study, AS-A reduced tumor volume and prolonged lifespans of mice, with no significant changes in body weight or obvious organ toxicity. This study confirmed the anticancer effects of AS-A by inhibiting cell proliferation, reducing telomerase activity, altering cell cycle progression, and inducing apoptosis. These findings suggest that AS-A has great potential for development as a novel agent or dietary supplement against GB.


Asunto(s)
Glioblastoma , Telomerasa , Humanos , Ratones , Animales , Glioblastoma/tratamiento farmacológico , Glioblastoma/metabolismo , Glioblastoma/patología , Telomerasa/metabolismo , Telomerasa/farmacología , Telomerasa/uso terapéutico , Apoptosis , Puntos de Control del Ciclo Celular , Ciclo Celular , Proliferación Celular , Telómero/metabolismo , Telómero/patología , Mitocondrias , Línea Celular Tumoral
4.
Thorac Cancer ; 14(21): 2007-2017, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37249164

RESUMEN

BACKGROUND: Lung cancer, especially non-small cell lung cancer (NSCLC), is one of the leading causes of cancer-related deaths worldwide. Vincristine (VCR) is a chemotherapeutic agent for lung cancers; however, its effectiveness is limited by side effects and the development of drug resistance. Patchouli alcohol (PA), from Pogostemon cablin extract, is known to possess anti-inflammatory and anticancer properties. In this study, we investigated the role of PA in inducing reactive oxygen species (ROS)-mediated DNA damage in A549 and VCR-resistant A549/V16 NSCLC cells. METHODS: The anticancer potential of PA was studied using the MTT assay, colony formation, flow cytometry analysis, western blotting, DCFDA staining, immunofluorescence staining, and TUNEL assay techniques. RESULTS: The intracellular ROS levels were enhanced in PA-treated cells, activating the CHK1 and CHK2 signaling pathways. PA further inhibited proliferation and colony-forming abilities and induced cell cycle arrest at the G0 /G1 phase by regulating p53/p21 and CDK2/cyclin E1 expression. Moreover, PA increased the percentage of cells in the subG1 phase and induced apoptosis by activating the Bax/caspase-9/caspase-3 intrinsic pathway. In addition, drug resistance (p-glycoprotein) and cancer stem cell (CD44 and CD133) markers were downregulated after PA treatment. Furthermore, combining PA and cisplatin exhibited synergistic inhibitory activity in A549 and A549/V16 cells. CONCLUSIONS: PA induced ROS-mediated DNA damage, triggered cell cycle arrest and apoptosis, attenuated drug resistance and cancer stem cell phenotypes, and synergistically inhibited proliferation in combination with cisplatin. These findings suggest that PA has the potential to be used for the treatment of NSCLC with or without VCR resistance.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Vincristina , Especies Reactivas de Oxígeno/metabolismo , Cisplatino/uso terapéutico , Línea Celular Tumoral , Puntos de Control del Ciclo Celular , Apoptosis , Daño del ADN , Proliferación Celular
5.
J Cell Mol Med ; 27(10): 1423-1435, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37038620

RESUMEN

Melanoma is a highly metastatic cancer with a low incidence rate, but a high mortality rate. Patchouli alcohol (PA), a tricyclic sesquiterpene, is considered the main active component in Pogostemon cablin Benth, which improves wound healing and has anti-tumorigenic activity. However, the pharmacological action of PA on anti-melanoma remains unclear. Thus, the present study aimed to investigate the role of PA in the proliferation, cell cycle, apoptosis and migration of melanoma cells. These results indicated that PA selectively inhibited the proliferation of B16F10 cells in a dose- and time-dependent manner. It induced cell cycle arrest at the G0 /G1 phase and typical morphological changes in apoptosis, such as chromatin condensation, DNA fragmentation and apoptotic bodies. In addition, PA reduced the migratory ability of B16F10 cells by upregulating E-cadherin and downregulating p-Smad2/3, vimentin, MMP-2 and MMP-9 expression. PA was also found to strongly suppress tumour growth in vivo. Furthermore, PA combined with cisplatin synergistically inhibited colony formation and migration of B16F10 cells and attenuated the development of resistance to treatment. Therefore, the results of this study indicate that PA may play a pivotal role in inducing apoptosis and reducing the migration of melanoma cells, and may thus be a potential candidate for melanoma treatment.


Asunto(s)
Melanoma , Sesquiterpenos , Humanos , Cisplatino/farmacología , Sesquiterpenos/farmacología , Línea Celular Tumoral , Apoptosis , Proliferación Celular
6.
Int J Med Sci ; 19(13): 1953-1964, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36438926

RESUMEN

Background: Cedrol is a natural sesquiterpene alcohol found in Cedrus atlantica, which has been proven to have a broad spectrum of biological activities, such as antimicrobial, anti-inflammatory, analgesic, anxiolytic, and anti-cancer effects. However, the underlying anticancer mechanisms and in vivo inhibitory effects of cedrol on colorectal cancer (CRC) have not been elucidated. In the present study, we investigated the anti-CRC potential of cedrol using in vitro and in vivo models. Methods: The effects of cedrol on cell viability, cell cycle progression, and apoptosis of HT-29 and CT-26 cells were detected by MTT, flow cytometry, and TUNEL assays. Western blotting was used to measure protein expression for molecular signaling analyses. Results: Cedrol inhibited HT-29 and CT-26 cell proliferation in a time- and dose-dependent manner, with IC50 values of 138.91 and 92.46 µM, respectively. Furthermore, cedrol induced cell cycle arrest at the G0/G1 phase by regulating the expression of cell cycle regulators, such as CDK4 and cyclin D1, and triggered apoptosis through extrinsic (FasL/caspase-8) and intrinsic (Bax/caspase-9) pathways. In addition, cedrol in combination with the clinical drug 5-fluorouracil exhibited synergistic inhibitory effects on CRC cell growth. Importantly, cedrol treatment suppressed the progression of CRC and improved the survival rate of animals at a well-tolerated dose. Conclusion: These results suggest that cedrol has an anti-cancer potential via induction of cell cycle arrest and apoptosis, and it could be considered as an effective agent for CRC therapy.


Asunto(s)
Caspasas , Neoplasias Colorrectales , Animales , Puntos de Control del Ciclo Celular , Apoptosis , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/metabolismo
7.
Food Sci Nutr ; 10(10): 3405-3414, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36249972

RESUMEN

Septic shock can aggravate organ dysfunction and even lead to death. Juniperus communis (JCo) extract has been experimentally demonstrated to have anti-inflammatory and antioxidant effects. We investigated the anti-inflammatory and antioxidant mechanism of JCo extract in vivo and in vitro. In a lipopolysaccharide (LPS)-induced acute kidney injury rat model, JCo extract improved animal survival, reduced kidney injury scores, suppressed kidney injury molecule-1, and preserved E-cadherin expression from LPS damage, as demonstrated by the immunohistochemistry examinations of the rat kidneys. In LPS-stimulated NRK-52E cells, JCo extract inhibited nuclear factor-κB (NF-κB) and increased adenosine monophosphate-activated protein kinase (AMPK) expression, prompting the activation of the antioxidant nuclear factor erythroid 2-related factor-2/heme oxygenase-1 pathway against oxidative stress. JCo extract ameliorated LPS-induced acute kidney injury by suppressing NF-κB signaling and stimulating the release of tumor necrosis factor-α and interleukin-1ß through the AMPK pathway.

8.
Food Sci Nutr ; 10(5): 1638-1648, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35592288

RESUMEN

Cedrus atlantica is a tree species found in Morocco with many clinical benefits in genitourinary, musculoskeletal, and skin systems. Previous studies have reported that extracts of Cedrus atlantica have antioxidant, antimicrobial, and anticancer properties. However, its role in colorectal cancer (CRC) remains unclear. The present study investigated the effects and underlying mechanisms of Cedrus atlantica extract (CAt) using HT-29 (human colorectal adenocarcinoma) and CT-26 CRC cell lines. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was performed to measure cell viability. Flow cytometry analysis and terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assay were used to study the cell cycle and cell apoptosis, respectively. The expression of cell cycle and apoptosis-associated proteins was detected by western blotting or immunohistochemical (IHC) staining. CAt showed significant inhibitory effects on the proliferation of HT-29 and CT-26 cells, and combined with the clinical drug, 5-fluorouracil (5-FU), exhibited synergistic effects. CAt induced cell cycle arrest at the G0/G1 phase through the upregulation of p53/p21 and the downregulation of cyclin-dependent kinases (CDKs)/cyclins. In addition, CAt-treated cells exhibited chromatin condensation, DNA fragmentation, and apoptotic bodies, which are typical characteristics of apoptosis activated via both the extrinsic (Fas ligand (FasL)/Fas/caspase-8) and intrinsic (Bax/caspase-9) pathways. Importantly, CAt suppressed tumor progression and prolonged the life span of mice within a well-tolerated dose. Therefore, our findings provide novel insights into the use of CAt for the treatment of CRC.

9.
Int J Med Sci ; 18(13): 2930-2942, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34220320

RESUMEN

Breast cancer is the second most common malignancy in women. Current clinical therapy for breast cancer has many disadvantages, including metastasis, recurrence, and poor quality of life. Furthermore, it is necessary to find a new therapeutic drug for breast cancer patients to meet clinical demand. n-Butylidenephthalide (BP) is a natural and hydrophobic compound that can inhibit several tumors. However, BP is unstable in aqueous or protein-rich environments, which reduces the activity of BP. Therefore, we used an LPPC (Lipo-PEG-PEI complex) that can encapsulate both hydrophobic and hydrophilic compounds to improve the limitation of BP. The purpose of this study is to investigate the anti-tumor mechanisms of BP and BP/LPPC and further test the efficacy of BP encapsulated by LPPC on SK-BR-3 cells. BP inhibited breast cancer cell growth, and LPPC encapsulation (BP/LPPC complex) enhanced the cytotoxicity on breast cancer by stabilizing the BP activity and offering endocytic pathways. Additionally, BP and LPPC-encapsulated BP induced cell cycle arrest at the G0/G1 phase and might trigger both extrinsic as well as intrinsic cell apoptosis pathway, resulting in cell death. Moreover, the BP/LPPC complex had a synergistic effect with doxorubicin of enhancing the inhibitory effect on breast cancer cells. Consequently, LPPC-encapsulated BP could improve the anti-cancer effects on breast cancer in vitro. In conclusion, BP exhibited an anti-cancer effect on breast cancer cells, and LPPC encapsulation efficiently improved the cytotoxicity of BP via an acceleration of entrapment efficiency to induce cell cycle block and apoptosis. Furthermore, BP/LPPC exhibited a synergistic effect in combination with doxorubicin.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Anhídridos Ftálicos/administración & dosificación , Apoptosis/efectos de los fármacos , Neoplasias de la Mama/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Doxorrubicina/administración & dosificación , Doxorrubicina/farmacocinética , Combinación de Medicamentos , Ensayos de Selección de Medicamentos Antitumorales , Sinergismo Farmacológico , Femenino , Puntos de Control de la Fase G1 del Ciclo Celular/efectos de los fármacos , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Liposomas , Nanopartículas/química , Anhídridos Ftálicos/farmacocinética , Polietilenglicoles/química , Polietileneimina/análogos & derivados , Polietileneimina/química
10.
Braz J Med Biol Res ; 54(10): e10891, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34287579

RESUMEN

Juniperus communis (JCo) is a well-known traditional Chinese medicinal plant that has been used to treat wounds, fever, swelling, and rheumatism. However, the mechanism underlying the anticancer effect of JCo extract on colorectal cancer (CRC) has not yet been elucidated. This study investigated the anticancer effects of JCo extract in vitro and in vivo as well as the precise molecular mechanisms. Cell viability was evaluated using the MTT assay. Cell cycle distribution was examined by flow cytometry analysis, and cell apoptosis was determined by the terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay. Protein expression was analyzed using western blotting. The in vivo activity of the JCo extract was evaluated using a xenograft BALB/c mouse model. The tumors and organs were examined through hematoxylin-eosin (HE) staining and immunohistochemistry. The results showed that JCo extract exhibited higher cytotoxicity against CRC cells than against normal cells and showed synergistic effects when combined with 5-fluorouracil. JCo extract induced cell cycle arrest at the G0/G1 phase via regulation of p53/p21 and CDK4/cyclin D1 and induced cell apoptosis via the extrinsic (FasL/Fas/caspase-8) and intrinsic (Bax/Bcl-2/caspase-9) apoptotic pathways. In vivo studies revealed that JCo extract suppressed tumor growth through the inhibition of proliferation and induction of apoptosis. In addition, there was no obvious change in body weight or histological morphology of normal organs after treatment. JCo extract suppressed CRC progression by inducing cell cycle arrest and apoptosis in vitro and in vivo, suggesting the potential application of JCo extract in the treatment of CRC.


Asunto(s)
Adenocarcinoma , Antineoplásicos Fitogénicos , Neoplasias Colorrectales , Juniperus , Adenocarcinoma/tratamiento farmacológico , Animales , Antineoplásicos Fitogénicos/farmacología , Apoptosis , Ciclo Celular , Puntos de Control del Ciclo Celular , Línea Celular Tumoral , Proliferación Celular , Neoplasias Colorrectales/tratamiento farmacológico , Ratones , Ratones Endogámicos BALB C , Extractos Vegetales/farmacología
11.
Biosci Rep ; 41(7)2021 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-34151367

RESUMEN

Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer and accounts for the fourth leading cause of all cancer deaths. Scientific evidence has found that plant extracts seem to be a reliable choice due to their multitarget effects against HCC. Juniperus communis has been used for centuries in traditional medicine and its anticancer properties have been reported. As a result, the purpose of the study was to investigate the anticancer effect and mechanism of J. communis extract (JCo extract) on HCC in vitro and in vivo. In the present study, we found that JCo extract inhibited the growth of human HCC cells by inducing cell cycle arrest at the G0/G1 phase, extensive apoptosis and suppressing metastatic protein expressions in HCC cells. Moreover, the combinational treatment of JCo and VP-16 was found to enhance the anticancer effect, revealing that JCo extract might have the potential to be utilized as an adjuvant to promote HCC treatment. Furthermore, in vivo study, JCo extract significantly suppressed HCC tumor growth and extended the lifespan with no or low systemic and pathological toxicity. JCo extract significantly up-regulated the expression of pro-apoptotic proteins and tumor suppressor p53, suppressed VEGF/VEGFR autocrine signaling, down-regulated cell cycle regulatory proteins and MMP2/MMP9 proteins. Overall, our results provide a basis for exploiting JCo extract as a potential anticancer agent against HCC.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Carcinoma Hepatocelular/tratamiento farmacológico , Juniperus , Neoplasias Hepáticas/tratamiento farmacológico , Extractos Vegetales/farmacología , Animales , Antineoplásicos Fitogénicos/aislamiento & purificación , Apoptosis/efectos de los fármacos , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Puntos de Control del Ciclo Celular/efectos de los fármacos , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Femenino , Regulación Neoplásica de la Expresión Génica , Células Hep G2 , Humanos , Juniperus/química , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Ratones Endogámicos BALB C , Ratones Desnudos , Invasividad Neoplásica , Extractos Vegetales/aislamiento & purificación , Transducción de Señal , Ensayos Antitumor por Modelo de Xenoinjerto
12.
Food Sci Nutr ; 9(6): 3209-3218, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34136185

RESUMEN

Pogostemon cablin has been indicated to treat many kinds of diseases and the progression of cancers, such as colorectal cancer. However, the effects of P. cablin extract (PPa extract) against acute myeloid leukemia have not been investigated. Thus, this study explored the anticancer potential of PPa extract and its mechanism in HL-60 cells. The MTT assay results showed that PPa extract significantly inhibited the proliferation of HL-60 cells in a dose-dependent manner and affected cell morphology, causing cell shrinkage and the formation of debris. PPa extract blocked cell cycle progression at the G0/G1 phase in a dose- and time-dependent manner and induced cell apoptosis, as shown by the observation of DNA fragments and apoptotic bodies. Furthermore, PPa extract caused the accumulation of a population of cells at G0/G1 phase via a reduction in p-Rb, increasing p21 expression, and downregulating cell cycle regulator protein expression. Then, PPa extract was found to activate the extrinsic and intrinsic apoptosis pathways, leading to cell death. These data demonstrated that PPa extract exerted inhibitory activity and triggered cell apoptosis in HL-60 cells and that PPa extract might be a chemopreventive agent for cancer therapy.

13.
Int J Med Sci ; 18(11): 2417-2430, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33967620

RESUMEN

Glioblastoma (GBM) is the most common malignant primary brain tumor in humans, exhibiting highly infiltrative growth and drug resistance to conventional chemotherapy. Cedrus atlantica (CAt) extract has been shown to decrease postoperative pain and inhibit the growth of K562 leukemia cells. The aim of this study was to assess the anti-GBM activity and molecular mechanism of CAt extract in vitro and in vivo. The results showed that CAt extract greatly suppressed GBM cells both in vitro and in vivo and enhanced the survival rate in subcutaneous and orthotopic animal models. Moreover, CAt extract increased the level of ROS and induced DNA damage, resulting in cell cycle arrest at the G0/G1 phase and cell apoptosis. Western blotting results indicated that CAt extract regulates p53/p21 and CDK4/cyclin D1 protein expression and activates extrinsic and intrinsic apoptosis. Furthermore, CAt extract enhanced the cytotoxicity of Temozolomide and decreased AKT/mTOR signaling by combination treatment. In toxicity assays, CAt extract exhibited low cytotoxicity toward normal cells or organs in vitro and in vivo. CAt extract suppresses the growth of GBM by induction of genotoxicity and activation of apoptosis. The results of this study suggest that CAt extract can be developed as a therapeutic agent or adjuvant for GBM treatment in the future.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Neoplasias Encefálicas/tratamiento farmacológico , Cedrus/química , Glioblastoma/tratamiento farmacológico , Extractos Vegetales/farmacología , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Apoptosis/efectos de los fármacos , Apoptosis/genética , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Daño del ADN/efectos de los fármacos , Sinergismo Farmacológico , Femenino , Puntos de Control de la Fase G1 del Ciclo Celular/efectos de los fármacos , Glioblastoma/patología , Humanos , Ratones , Extractos Vegetales/uso terapéutico , Ratas , Temozolomida/farmacología , Temozolomida/uso terapéutico , Ensayos Antitumor por Modelo de Xenoinjerto
14.
Cancer Control ; 28: 10732748211009245, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33887987

RESUMEN

Kynurenine 3-monooxygenase (KMO) is the pivotal enzyme in the kynurenine pathway and is located on the mitochondrial outer membrane. The dysregulation of KMO leads to various neurodegenerative diseases; however, it is rarely mentioned in cancer progression. Our previous study showed that KMO overexpression in canine mammary gland tumors (cMGT) is associated with poor prognosis in cMGT patients. Surprisingly, it was also found that KMO can be located on the cell membranes of cMGT cells, unlike its location in normal cells, where KMO is expressed only within the cytosol. Since cMGT and human breast cancer share similar morphologies and pathogenesis, this study investigated the possibility of detecting surface KMO in human breast cancers and the role of surface KMO in tumorigenesis. Using immunohistochemistry (IHC), flow cytometry (FC), immunofluorescence assay (IFA), and transmission electron microscopy (TEM), we demonstrated that KMO can be aberrantly and highly expressed on the cell membranes of breast cancer tissues and in an array of cell lines. Masking surface KMO with anti-KMO antibody reduced the cell viability and inhibited the migration and invasion of the triple-negative breast cancer cell line, MDA-MB-231. These results indicated that aberrant surface expression of KMO may be a potential therapeutic target for human breast cancers.


Asunto(s)
Quinurenina 3-Monooxigenasa/biosíntesis , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/secundario , Proliferación Celular , Humanos , Quinurenina 3-Monooxigenasa/análisis , Neoplasias de la Mama Triple Negativas/química , Neoplasias de la Mama Triple Negativas/patología , Células Tumorales Cultivadas
15.
Biomed Res Int ; 2021: 8817875, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33791383

RESUMEN

Hepatocellular carcinoma (HCC) is the second and sixth leading cause of cancer death in men and woman in 185 countries statistics, respectively. n-Butylidenephthalide (BP) has shown anti-HCC activity, but it also has an unstable structure that decreases its potential antitumor activity. The aim of this study was to investigate the cell uptake, activity protection, and antitumor mechanism of BP encapsulated in the novel liposome LPPC in HCC cells. BP/LPPC exhibited higher cell uptake and cytotoxicity than BP alone, and combined with clinical drug etoposide (VP-16), BP/LPPC showed a synergistic effect against HCC cells. Additionally, BP/LPPC increased cell cycle regulators (p53, p-p53, and p21) and decreased cell cycle-related proteins (Rb, p-Rb, CDK4, and cyclin D1), leading to cell cycle arrest at the G0/G1 phase in HCC cells. BP/LPPC induced cell apoptosis through activation of both the extrinsic (Fas-L and Caspase-8) and intrinsic (Bax and Caspase-9) apoptosis pathways and activated the caspase cascade to trigger HCC cell death. In conclusion, the LPPC complex improved the antitumor activity of BP in terms of cytotoxicity, cell cycle regulation and cell apoptosis, and BP/LPPC synergistically inhibited cell growth during combination treatment with VP-16 in HCC cells. Therefore, BP/LPPC is potentially a good candidate for clinical drug development or for use as an adjuvant for clinical drugs as a combination therapy for hepatocellular carcinoma.


Asunto(s)
Carcinoma Hepatocelular , Portadores de Fármacos , Neoplasias Hepáticas , Nanopartículas , Anhídridos Ftálicos , Animales , Apoptosis/efectos de los fármacos , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Puntos de Control del Ciclo Celular/efectos de los fármacos , Perros , Portadores de Fármacos/química , Portadores de Fármacos/farmacología , Células Hep G2 , Humanos , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Células de Riñón Canino Madin Darby , Nanopartículas/química , Nanopartículas/uso terapéutico , Proteínas de Neoplasias/metabolismo , Anhídridos Ftálicos/química , Anhídridos Ftálicos/farmacología
16.
Food Sci Nutr ; 9(2): 1088-1098, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33598192

RESUMEN

Esophageal squamous cell carcinoma (ESCC) is one of the most common cancers. It has a high mortality rate and requires novel effective drugs and therapeutic approaches. Juniperus communis (JCo), used to flavor gin and food, has been documented to have anti-tumor activity. The aim of this study was to investigate the antitumor activity of JCo extract against ESCC and its possible mechanisms. JCo extract suppressed cell growth in ESCC and showed higher selection for ESCC cells than normal cells compared to the clinical drug 5-fluorouracil (5-FU). JCo extract induced cell cycle arrest at the G0/G1 phase by regulating the expression of p53/p21 and CDKs/cyclins, triggering cell apoptosis by activating both the extrinsic (Fas/FasL/Caspase 8) and intrinsic (Bcl-2/Bax/Caspase 9) apoptosis pathways. Moreover, a combination treatment of JCo and 5-FU synergistically inhibited proliferation of ESCC cells. These results suggest that JCo extract is a potential natural therapeutic agent for esophageal cancer, as it could induce cell cycle arrest and apoptosis in ESCC cells.

17.
Int J Med Sci ; 18(1): 157-168, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33390784

RESUMEN

Juniperus indica Bertol. is an herbal plant that belongs to the genus Juniperus, which is commonly used in traditional medicine to refresh the mind and for diuretic use. However, few studies have reported the function of J. indica Bertol. Hence, this study aimed to investigate the anti-tumor and synergistic potential of J. indica Bertol. extract (JIB extract) for melanoma cells. Our results indicated the anti-melanoma activity of JIB extract. JIB extract induced cell cycle arrest at the G0/G1 phase and decreased cyclin and cdk protein expressions. In addition, AKT/mTOR signaling and MAPK signaling were inhibited by JIB extract to suppress melanoma cell growth and proliferation. Additionally, JIB extract induced B16/F10 cell apoptosis via the caspase cascade. According to the JIB extract's anti-melanoma capacity, to assess the synergistic effects of cisplatin and JIB extract. The results demonstrated that JIB extract combined with cisplatin enhanced the inhibition of cell growth, proliferation, and survival through the obstruction of cell cycle progression and AKT/mTOR and MAPK signaling as well as the induction of cell apoptosis. Collectively, our results indicate that JIB extract showed anti-tumor effects and synergized with cisplatin against B16/F10 cells, indicating the possibility of JIB extract to be developed as adjuvant therapy for melanoma.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Cisplatino/farmacología , Juniperus/química , Melanoma/tratamiento farmacológico , Extractos Vegetales/farmacología , Neoplasias Cutáneas/tratamiento farmacológico , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Cisplatino/uso terapéutico , Perros , Sinergismo Farmacológico , Puntos de Control de la Fase G1 del Ciclo Celular/efectos de los fármacos , Humanos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Células de Riñón Canino Madin Darby , Melanoma/patología , Ratones , Extractos Vegetales/uso terapéutico , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo
18.
Braz. j. med. biol. res ; 54(10): e10891, 2021. tab, graf
Artículo en Inglés | LILACS | ID: biblio-1285652

RESUMEN

Juniperus communis (JCo) is a well-known traditional Chinese medicinal plant that has been used to treat wounds, fever, swelling, and rheumatism. However, the mechanism underlying the anticancer effect of JCo extract on colorectal cancer (CRC) has not yet been elucidated. This study investigated the anticancer effects of JCo extract in vitro and in vivo as well as the precise molecular mechanisms. Cell viability was evaluated using the MTT assay. Cell cycle distribution was examined by flow cytometry analysis, and cell apoptosis was determined by the terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay. Protein expression was analyzed using western blotting. The in vivo activity of the JCo extract was evaluated using a xenograft BALB/c mouse model. The tumors and organs were examined through hematoxylin-eosin (HE) staining and immunohistochemistry. The results showed that JCo extract exhibited higher cytotoxicity against CRC cells than against normal cells and showed synergistic effects when combined with 5-fluorouracil. JCo extract induced cell cycle arrest at the G0/G1 phase via regulation of p53/p21 and CDK4/cyclin D1 and induced cell apoptosis via the extrinsic (FasL/Fas/caspase-8) and intrinsic (Bax/Bcl-2/caspase-9) apoptotic pathways. In vivo studies revealed that JCo extract suppressed tumor growth through the inhibition of proliferation and induction of apoptosis. In addition, there was no obvious change in body weight or histological morphology of normal organs after treatment. JCo extract suppressed CRC progression by inducing cell cycle arrest and apoptosis in vitro and in vivo, suggesting the potential application of JCo extract in the treatment of CRC.


Asunto(s)
Animales , Conejos , Neoplasias Colorrectales/tratamiento farmacológico , Adenocarcinoma/tratamiento farmacológico , Juniperus , Antineoplásicos Fitogénicos/farmacología , Extractos Vegetales/farmacología , Ciclo Celular , Apoptosis , Línea Celular Tumoral , Proliferación Celular , Puntos de Control del Ciclo Celular , Ratones Endogámicos BALB C
19.
Molecules ; 25(23)2020 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-33266043

RESUMEN

The purpose of the study was to elucidate the anti-hepatoma effects and mechanisms of Pogostemon cablin essential oils (PPa extract) in vitro and in vivo. PPa extract exhibited an inhibitory effect on hepatocellular carcinoma (HCC) cells and was less cytotoxic to normal cells, especially normal liver cells, than it was to HCC cells, exerting a good selective index. Additionally, PPa extract inhibited HCC cell growth by blocking the cell cycle at the G0/G1 phase via p53 dependent or independent pathway to down regulated cell cycle regulators. Moreover, PPa extract induced the FAS-FASL-caspase-8 system to activate the extrinsic apoptosis pathway, and it increased the bax/bcl-2 ratio and reduced ΔΨm to activate the intrinsic apoptosis pathway that might be due to lots of reactive oxygen species (ROS) production which was induced by PPa extract. In addition, PPa extract presented to the potential to act synergistically with sorafenib to effectively inhibit HCC cell proliferation through the Akt/mTOR pathway and reduce regrowth of HCC cells. In an animal model, PPa extract suppressed HCC tumor growth and prolonged lifespan by reducing the VEGF/VEGFR axis and inducing tumor cell apoptosis in vivo. Ultimately, PPa extract demonstrated nearly no or low system-wide, physiological, or pathological toxicity in vivo. In conclusion, PPa extract effectively inhibited HCC cell growth through inducing cell cycle arrest and activating apoptosis in vitro and in vivo. Furthermore, PPa extract exhibits less toxicity toward normal cells and organs than it does toward HCC cells, which might lead to fewer side effects in clinical applications. PPa extract may be developed into a clinical drug to suppress tumor growth or functional food to prevent HCC initiation or chemoprotection of HCC recurrence.


Asunto(s)
Antineoplásicos/farmacología , Carcinoma Hepatocelular/patología , Puntos de Control del Ciclo Celular/efectos de los fármacos , Daño del ADN , Extractos Vegetales/farmacología , Pogostemon/química , Especies Reactivas de Oxígeno/metabolismo , Animales , Antineoplásicos/química , Apoptosis , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/metabolismo , Proliferación Celular , Femenino , Humanos , Técnicas In Vitro , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
20.
Mol Biol Rep ; 47(11): 8935-8947, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33150524

RESUMEN

This study investigated the anti-leukemic effects of Cedrus atlantica extract (CAt extract) on cell cycle distribution and apoptosis in human acute myeloid leukemia (AML) cells. AML often occurs in older adults, accounting for 60% of the cases, and is likely to be resistant to chemotherapy due to multidrug resistance, resulting in early death during cancer treatment. With the increasing focus on prevention medicine, natural plant components are being used as a major source for the development of therapeutic drugs or functional foods to cure or alleviate the disease. Cedrus species are known to have anti-inflammatory, antimicrobial, antiviral, and anticancer effects; however, the anticancer effects of CAt extract have not been elucidated. In this study, CAt extract demonstrated an inhibitory effect on human leukemia cells in a concentration-dependent manner; CAt extract induced G0/G1 phase arrest via restrained protein levels of p-Rb and cell cycle-related proteins. After CAt extract exposure, the extrinsic and intrinsic apoptotic pathways were activated through caspase-8, -9, and -3 cleavage. Additionally, CAt extract suppressed VEGF, MMP-2, and MMP-9 expression. This study demonstrated that CAt extract treatment significantly reduced cell growth, cell cycle arrest in the G0/G1 phase, and induction of apoptosis, leading to leukemia cell death.


Asunto(s)
Apoptosis/efectos de los fármacos , Cedrus/química , Ciclo Celular/efectos de los fármacos , Extractos Vegetales/farmacología , Enfermedad Aguda , Animales , Caspasas/metabolismo , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Células HL-60 , Humanos , Células Jurkat , Células K562 , Leucemia Mieloide/metabolismo , Leucemia Mieloide/patología , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Ratones , Células RAW 264.7 , Factor A de Crecimiento Endotelial Vascular/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...